A factorization with update procedures for a KKT matrix arising in direct optimal control
نویسندگان
چکیده
Quadratic programs obtained for optimal control problems of dynamic or discrete-time processes usually involve highly block structured Hessian and constraints matrices, to be exploited by efficient numerical methods. In interior point methods, this is elegantly achieved by the widespread availability of advanced sparse symmetric indefinite factorization codes. For active set methods, however, conventional dense matrix techniques suffer from the need to update base matrices in every active set iteration, thereby loosing the sparsity structure after a few updates. This contribution presents a new factorization of a KKT matrix arising in active set methods for optimal control. It fully respects the block structure without any fill-in. For this factorization, matrix updates are derived for all cases of active set changes. This allows for the design of a highly efficient block structured active set method for optimal control and model predictive control problems with long horizons or many control parameters.
منابع مشابه
A new approach for building recommender system using non negative matrix factorization method
Nonnegative Matrix Factorization is a new approach to reduce data dimensions. In this method, by applying the nonnegativity of the matrix data, the matrix is decomposed into components that are more interrelated and divide the data into sections where the data in these sections have a specific relationship. In this paper, we use the nonnegative matrix factorization to decompose the user ratin...
متن کاملOn the update of constraint preconditioners for regularized KKT systems
We address the problem of preconditioning sequences of regularized KKT systems, such as those arising in interior point methods for convex quadratic programming. In this case, constraint preconditioners (CPs) are very effective and widely used; however, when solving large-scale problems, the computational cost for their factorization may be high, and techniques for approximating them appear as ...
متن کاملJOHN COURTNEY HAWS . Preconditioning KKT Systems . ( Under the direction of
JOHN COURTNEY HAWS. Preconditioning KKT Systems. (Under the direction of Professor Carl D. Meyer.) This research presents new preconditioners for linear systems. We proceed from the most general case to the very specific problem area of sparse optimal control. In the first most general approach, we assume only that the coefficient matrix is nonsingular. We target highly indefinite, nonsymmetric...
متن کاملA New Pivot Selection Algorithm for Symmetric Indefinite Factorization Arising in Quadratic Programming with Block Constraint Matrices
Quadraticprogrammingis a class of constrained optimizationproblem with quadratic objective functions and linear constraints. It has applications in many areas and is also used to solve nonlinear optimizationproblems. This article focuses on the equality constrained quadratic programs whose constraintmatrices are block diagonal. Using the direct solution method, we propose a new pivot selection ...
متن کاملجداسازی طیفی و مکانی تصاویر ابرطیفی با استفاده از Semi-NMF و تبدیل PCA
Unmixing of remote-sensing data using nonnegative matrix factorization has been considered recently. To improve performance, additional constraints are added to the cost function. The main challenge is to introduce constraints that lead to better results for unmixing. Correlation between bands of Hyperspectral images is the problem that is paid less attention to it in the unmixing algorithms. I...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Math. Program. Comput.
دوره 3 شماره
صفحات -
تاریخ انتشار 2011